翻訳と辞書
Words near each other
・ Vakati Panduranga Rao
・ Vake
・ Vake (Gagra District)
・ Vake Park
・ Vakeeswarar
・ Vakfıkebir
・ Vakfıkebir Arena
・ Vakfıkebir bread
・ Vakh River
・ Vakha Albakov
・ Vakha Arsanov
・ Vakha Keligov
・ Vakhid Masudov
・ Vakhid Tsartsayev
・ Vakhitov
Vakhitov–Kolokolov stability criterion
・ Vakhmistrov I-Ze
・ Vakhrushev
・ Vakhrusheve
・ Vakhrushevo
・ Vakhsh
・ Vakhsh District
・ Vakhsh Qurghonteppa
・ Vakhsh Range
・ Vakhsh River
・ Vakhsh, Tajikistan
・ Vakhshak
・ Vakhtang
・ Vakhtang Ananyan
・ Vakhtang Balavadze


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Vakhitov–Kolokolov stability criterion : ウィキペディア英語版
Vakhitov–Kolokolov stability criterion
The Vakhitov–Kolokolov stability criterion is a condition for linear stability (sometimes called ''spectral stability'') of solitary wave solutions to a wide class of U(1)-invariant Hamiltonian systems, named after Russian scientists Aleksandr Kolokolov (Александр Александрович Колоколов) and Nazib Vakhitov (Назиб Галиевич Вахитов).
The condition for linear stability of a solitary wave u(x,t)=\phi_\omega(x)e^\, with frequency \omega\, has the form
:
\fracQ(\omega)<0,

where Q(\omega)\, is the charge (or momentum) of the solitary wave
\phi_\omega(x)e^\,,
conserved by Noether's theorem due to U(1)-invariance of the system.
==Original formulation==

Originally, this criterion was obtained for the nonlinear Schrödinger equation,
:
i\fracu(x,t)=-\frac
u(x,t)+g(|u(x,t)|^2)u(x,t),

where x\in\R\,, t\in\R,
and g\in C^\infty(\R) is a smooth real-valued function.
The solution u(x,t)\, is assumed to be complex-valued.
Since the equation is U(1)-invariant,
by Noether's theorem,
it has an integral of motion,
Q(u)=\frac\int_|u(x,t)|^2\,dx, which is called charge or momentum, depending on the model under consideration.
For a wide class of functions g\,, the nonlinear Schrödinger equation admits
solitary wave solutions of the form
u(x,t)=\phi_\omega(x)e^\,, where \omega\in\R
and \phi_\omega(x)\, decays for large x\,
(one often requires that \phi_\omega(x)\, belongs to the Sobolev space H^1(\R^n)).
Usually such solutions exist for \omega\, from an interval or collection of intervals
of a real line.
Vakhitov–Kolokolov stability criterion,

:
\fracQ(\phi_\omega)<0,

is a condition of spectral stability
of a solitary wave solution.
Namely, if this condition is satisfied at a particular value of \omega\,, then the linearization at the solitary wave with this \omega\, has no spectrum in the right half-plane.
This result is based on an earlier work by Vladimir Zakharov.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Vakhitov–Kolokolov stability criterion」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.